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Introduction

Nontraumatic subarachnoid hemorrhage (SAH) is a hemor-
rhagic stroke caused primarily by the rupture of an intra-
cranial aneurysm, associated with high early mortality 
and complications such as vasospasm, hydrocephalus, and 
rebleeding [1, 2]. Cranial Computerized Tomography (CT) 
scans are the diagnostic cornerstone and provide essential 
information for early risk stratification.

Grading systems such as the Glasgow Coma Scale (GCS) 
[3]the World Federation of Neurosurgical Societies (WFNS) 
[4] scale and the Fisher scale [5] are widely used to assess 
severity and predict outcomes in aneurysmal SAH (aSAH). 
The modified Fisher scale incorporates intraventricular 
hemorrhage, improving the prediction of vasospasm [6]. 
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Abstract
Subarachnoid hemorrhage (SAH) is a severe condition with high morbidity and long-term neurological consequences. 
Radiomics, by extracting quantitative features from Computed Tomograhpy (CT) scans, may reveal imaging biomarkers 
predictive of outcomes. This study evaluates the predictive value of radiomics in SAH for multiple outcomes and com-
pares its performance to models based on clinical data.Radiomic features were extracted from admission CTs using seg-
mentations of brain tissue (white and gray matter) and hemorrhage. Machine learning models with cross-validation were 
trained using clinical data, radiomics, or both, to predict 6-month mortality, Glasgow Outcome Scale (GOS), vasospasm, 
and long-term hydrocephalus. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature contributions.
The training dataset included 403 aneurysmal SAH patients; GOS predictions used all patients, while vasospasm and 
hydrocephalus predictions excluded those with incomplete data or early death, leaving 328 and 332 patients, respectively. 
Radiomics and clinical models demonstrated comparable performance, achieving in validation set AUCs more than 85% 
for six-month mortality and clinical outcome, and 75% and 86% for vasospasm and hydrocephalus, respectively. In an 
independent cohort of 41 patients, the combined models yielded AUCs of 89% for mortality, 87% for clinical outcome, 
66% for vasospasm, and 72% for hydrocephalus. SHAP analysis highlighted significant contributions of radiomic features 
from brain tissue and hemorrhage segmentation, alongside key clinical variables, in predicting SAH outcomes.This study 
underscores the potential of radiomics-based approaches for SAH outcome prediction, demonstrating predictive power 
comparable to traditional clinical models and enhancing understanding of SAH-related complications.
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More recently, combined models that integrate clinical sta-
tus and CT findings, such as the ictWFNS, have shown good 
prognostic performance and enhanced early risk stratifica-
tion [7]. However, these approaches rely on visual assess-
ment and predefined qualitative thresholds, which may not 
capture the full complexity of the pathophysiological pro-
cess or subtle image-based biomarkers.

Radiomics refers to extracting quantitative data from 
medical images, revealing hidden information that enhances 
diagnosis, prognosis, and treatment planning. These features 
include shape, texture, intensity, and spatial relationships of 
pixels or voxels within the images. Radiomics has shown 
promise in oncology, neurology, and cardiology [8, 9].

This study assesses the prognostic value of combining 
radiomic features and clinical variables to predict key out-
comes in aSAH patients. Machine learning models were 
used to predict mortality, clinical outcome (GOS) [10, 11]
vasospasm, and hydrocephalus, based on features extracted 
from bleeding regions and brain parenchyma in initial CT 
scans.

Given the heterogeneity of aSAH outcomes, different pre-
dictors may be relevant depending on the endpoint. Clinical 
outcome and mortality are often influenced by hemorrhagic 
burden and ischemic parenchymal injury [12]while vaso-
spasm is more closely related to cisternal blood, as captured 
by the modified Fisher scale [13, 14]. Hydrocephalus is typ-
ically linked to intraventricular hemorrhage and impaired 
CSF circulation [15]. These considerations motivated the 
inclusion of both bleeding and parenchymal segmentations 

in our models. We further evaluate model performance 
across input configurations and assess interpretability.

Materials and methods

This section describes the dataset analysis (clinical vari-
ables and CT images), ROI segmentation (white matter, 
gray matter, bleeding), radiomic feature extraction, and the 
methodology for model development, evaluation, and inter-
pretation, as shown in Fig. 1.

Patient cohort and inclusion criteria

A retrospective dataset of 403 patients was collected from 
Hospital 12 de Octubre, a single tertiary care center in 
Madrid, Spain, spanning the period from 2007 to 2023, and 
was used for model development. Subsequently, an inde-
pendent dataset comprising 41 patients from 2023 to 2024 
was used to evaluate model performance on a more recent 
cohort, simulating a temporal validation scenario. Inclusion 
criteria were:

	● Diagnosis of spontaneous aSAH confirmed by non-con-
trast head CT.

	● Identification of the causative aneurysm via Computed 
Tomography Angiography (CTA) and/or Digital Sub-
traction Angiography (DSA) during hospitalization [17].

Fig. 1  Methodology workflow: Starting from a CT scan, gray mat-
ter, white matter, and lesions are segmented. radiomic features are 
extracted and combined with clinical data for modeling using 5-fold 

cross-validation. Finally, model interpretability highlights key features 
and performance metrics
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	● Availability of baseline CT images and complete clini-
cal data at admission.

Exclusion criteria included:

	● SAH secondary to trauma or non-aneurysmal causes.
	● Lack of follow-up at 6 months post-event.

All CT images were acquired at the time of initial diag-
nosis. Clinical variables were extracted from electronic 
health records documented at initial presentation. Out-
comes, including mortality and shunt requirements, were 
based on follow-up reports. While assessors were not for-
mally blinded, these outcomes are objective and routinely 
documented.

All procedures were part of routine clinical care. Given 
the retrospective design and use of de-identified data, the 
study was exempt from formal ethical approval, and the 
requirement for patient consent was waived by the insti-
tutional ethics committee. Clinical and imaging data were 
pseudonymized and uploaded to the QUIBIM Precision® 
V3.0.3 platform (Quibim, Valencia, Spain), specifically des-
ignated for this study.

Outcome definitions

The primary assessed outcome was the GOS at six months, 
with two classification tasks:

	● Clinical outcome prediction:

	– Good outcome: GOS 4–5 (moderate disability or 
good recovery).

	– Poor outcome: GOS 1–3 (severe disability, vegeta-
tive state, or death).

	● Mortality prediction:

	– Survived: GOS ≥ 2.
	– Death: GOS = 1.

Two additional binary outcomes were included:

	● Vasospasm (yes/no): Presence of clinical and radiologi-
cal findings of cerebral vasospasm.

	– Clinical criteria: New focal neurological deficits or 
decreased consciousness, not attributable to rebleed-
ing, hydrocephalus, or seizures.

	– Radiological criteria: Vessel narrowing observed on 
CTA and/or DSA and attributed to vasospasm by the 
neuroradiologist [18].

	● Hydrocephalus (yes/no): Symptomatic ventricular en-
largement requiring definitive cerebrospinal fluid shunt-
ing, including cases not tolerating external ventricular 
drainage during hospitalization or within the six-month 
follow-up.

Clinical and image data preprocessing and feature 
engineering

Clinical data and preprocessing

The database initially included 48 clinical variables recorded 
at hospital admission. Variables with more than 15% miss-
ing data were excluded from further analysis. This process 
resulted in a final set of 20 clinical variables summarized in 
Table 1, and definitions along with diagnostic thresholds for 
comorbidities are detailed in Supplemental Table 1.

A comparative statistical analysis was performed between 
the training and validation dataset and the test set. Categori-
cal variables were analyzed with the Chi-squared test, and 
effect size was measured using Phi for 2 × 2 tables and Cra-
mér’s V for larger tables. Continuous variables were com-
pared with independent t-tests, and Cohen’s d as used for 
effect size. A significance level of P =.05 was applied [19].

Missing data were handled using Multiple Imputation by 
Chained Eq. [20] (MICE), with linear regression for contin-
uous variables and logistic regression for categorical ones. 
Five imputations were performed to improve reliability and 
validity.

Image segmentation

Radiomics features were extracted from gray matter, white 
matter, and bleeding segmentations, as these regions can 
influence patient outcomes [21–23]. CTSeg, an atlas-based 
algorithm for brain CT segmentation [24, 25] was used to 
classify six regions: gray matter, white matter, cerebrospinal 
fluid, skull, soft tissue, and background. Based on SPM12 
tool, CTSeg has been validated in numerous studies [26, 
27]. Blood regions are often classified as cerebrospinal 
fluid, which is unlikely to significantly affect the radiomics 
from gray and white matter. Figure 2 shows the segmenta-
tion of these regions and the HSA, with a bounding box, 
from two randomly selected cases.

Bleeding segmentation was performed with a pretrained 
Vision Transformer (ViT) model [28]. Images were pre-
processed to exclude the skull, and lesion segmentation 
was validated against manual semiautomated volumes 
from 255 patients [12]. Two validation approaches were 
used for bleeding automated segmentation: first, a clinical 
database parameter derived from semi-automated manual 
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to radiomics feature extraction, standardizing intensity dis-
tributions across all patients.

Radiomics feature extraction

Radiomics features were extracted from brain tissue and 
bleeding segmentation using PyRadiomics v3.0.1 [29], fol-
lowing IBSI guidelines [30]. A total of 1379 radiomic fea-
tures were extracted per region: 14 shape, 18 first-order, and 
73 s-order features, with an additional 1365 derived from 

segmentation [12, 15] and second, a review by an experi-
enced neurosurgeon.

Image preprocessing

CT images were resampled to 1 × 1 × 1 mm³ isotropic vox-
els. Intensity values were discretized with a fixed bin width 
of 25 Hounsfield units to ensure reproducibility across 
scans. Z-score normalization was applied to all images prior 

Fig. 2  Brain tissue segmentation using CTseg. The right column for each patient shows the original image with the brain segmentation. In the left 
column, the bleeding segmentation is also represented

 

Variable Train/Validation Test p-value Effect Size Significant?
Categorical Variables (%) Phi/

Cramer’s V
Gender (Female) 68.5% 58.5% 0.05 0.15 No
Hypertension (Yes) 41.7% 51.2% 0.03 0.22 Yes
Smoking (Yes) 28.5% 43.9% 0.01 0.31 Yes
Diabetes (Yes) 18.6% 14.6% 0.33 0.10 No
Dyslipidemia/Obesity (Yes) 17.9% 48.8% 0.00 0.64 Yes
Alcoholism (Yes) 5.7% 14.6% 0.01 0.27 Yes
WFNS score (≥ 4) 38.4% 61.0% 0.00 0.54 Yes
Modified Fisher (≥ 3) 79.4% 90.2% 0.03 0.21 Yes
Posterior circulation 9.0% 0% 0.04 0.24 Yes
Numerical Variables (Mean ± SD) Cohen’s D
Age (years) 52 ± 18 59 ± 14 0.03 -0.43 Yes
Glucose (mg/dL) 151 ± 56 186 ± 63 0.02 -0.58 Yes
Platelets (10⁹/L) 698 ± 101 238 ± 53 0.00 5.69 Yes

Table 1  Clinical characteristics of 
patients in the training/validation 
and test datasets, with statistical 
comparison
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test cohort is a separate external dataset of 41 patients 
(2023–2024), excluded from model development, used to 
evaluate generalizability.

Figure 3 illustrates the model development methodology. 
For each fold:

1.	 Algorithms: 
2.	 Random Forest [32] (RF) Extra Trees Classifier 

[33] (ExtraRF) and Extreme Gradient Boosting [34] 
(XGBoost) were tested.

3.	 Feature Selection: MRMR [31] was used to select 5–20 
features for clinical models and 5–30 for radiomics 
models.

4.	 Hyperparameter Tuning: Grid search [35] optimized 
hyperparameters using AUC as the metric.

5.	 Outlier Removal: Isolation Forest [36] was tested for 
detecting and removing outliers.

6.	 Data Balancing: ADASYN [37] was applied to 
improve class balance, tested with and without usage.

The entire procedure was repeated using three random seeds 
to assess the consistency and robustness of the results.

The best-performing configuration in each fold was 
selected based on validation AUC. Performance was reported 
as the average and 95% confidence intervals across folds 
and seeds. Additionally, each model obtained during cross-
validation (across folds and seeds) was evaluated on the 
independent test cohort to assess temporal generalizability.

Model predictions were generated using probability out-
puts from scikit-learn [38] and XGBoost APIs [33]. Besides 
AUC, metrics such as Balanced Accuracy (BalAcc), Sen-
sitivity (Sens), and Specificity (Spec), F1-Score, Accuracy 
(Acc) and confusion matrices were monitored [39, 40]. Cal-
ibration curves [41] and Brier scores [42] were also com-
puted to evaluate the reliability and accuracy of predicted 
probabilities.

SHAP (SHapley Additive exPlanations) values are 
a method for interpreting machine learning models by 
fairly attributing each feature’s contribution to the model’s 

filtered images using five filter types (square, exponen-
tial, logarithm, eight-level Haar wavelet, and Laplacian of 
Gaussian with σ = 0.5, 3.0, and 5.0).

Radiomics from gray and white matter were com-
bined to create a brain tissue signature. Predictive models 
were developed separately for brain tissue and bleeding 
radiomics, enabling comparison of their clinical utility.

Models were developed using three feature sets: clinical 
variables only (20 features), radiomics only, and a combi-
nation of both. Radiomics-only models included 1,379 fea-
tures for bleeding segmentation and 2,758 for gray/white 
matter segmentation. Combined models integrated clinical 
variables with 1,399 (bleeding) and 2,778 (gray/white mat-
ter) features, respectively.

Feature engineering

Spearman correlation analysis was performed to iden-
tify highly correlated features within both clinical and 
radiomic datasets. Features with a correlation above 90% 
were excluded to prevent redundancy. Additionally, feature 
selection was performed using the Minimum Redundancy 
Maximum Relevance (MRMR) [31] method within each 
cross-validation fold, ensuring that only the most informa-
tive and non-redundant features were retained for model 
development.

Model development and evaluation

Model development followed a 5-fold stratified cross-val-
idation. In each fold, 80% of the data was used for model 
development, with internal validation for tuning, and 20% 
as test set. All steps were confined to training data to prevent 
information leakage.

To clarify the terminology: the training set is used for 
model fitting, including feature selection and hyperparam-
eter tuning; the validation set is an internal split within the 
training data for tuning during cross-validation; the test set 
refers to the held-out fold in 5-fold cross-validation, used to 
assess performance on unseen data; and the independent 

Fig. 3  Model development used 5-fold stratified cross-validation with 
three random seeds. Each split included a unique test (blue) and train-
ing set (yellow). Models underwent outlier removal, feature selection, 

data balancing, and hyperparameter tuning. The best model per fold 
was selected by AUC, and overall performance was averaged

 

1 3

Page 5 of 15    528 



Neurosurgical Review          (2025) 48:528 

Image segmentation

Validation of the automatic bleeding segmentation was 
performed by comparing model predictions with clini-
cal database parameters, followed by expert review from 
an experienced neurosurgeon. For the clinical database, 
bleeding volumes for 255 patients averaged 20.14 mL 
(range: 0–120.57 mL). In comparison, the automated model 
reported an average of 48.95 mL (range: 0–156.09 mL). 
Bland-Altman plot (Fig. 5) reveals a bias of 25 mL higher 
for automatic segmentation. Larger discrepancies were 
noted for higher bleeding volumes, consistent with other 
studies reporting differences from 15 mL [46] to more than 
20 mL [47] particularly for large hemorrhages where algo-
rithms struggle with contour delineation. Points near (0,0) 
likely reflect cases with small bleeds segmented manually 
but missed by the automatic model, reflecting its limitations 
in detecting low-volume hemorrhages.

Additionally, a neurosurgeon visually assessed 20 ran-
domly selected segmentations across varying hemorrhage 
volumes and locations. Overestimations were mainly 
observed on convexity surfaces, while intrahemispheric 
regions were more accurate. Supplemental Table 2 illus-
trates five representative cases, illustrating typical over- and 
under-segmentations patterns.

Performance metrics of the models

First, the predictive power of radiomics was compared to 
clinical data, as shown in the upper graph of Fig.  6. The 
lower graph of Fig. 6 depicts models using only radiomics 
versus combining radiomics and clinical data. The compari-
son includes radiomics from bleeding regions and from gray 
and white matter regions.

Performance metrics (AUC, BalAcc, Sens, and Spec) 
were used to evaluate each model. For each, 15 variations 
were generated, with 95% confidence intervals based on 
predictions from 5-fold cross-validation using 3 different 
seed partitions.

Figure 6 upper shows that radiomics performs compara-
bly to traditional clinical variables. Radiomics-based models 
perform comparably to those using clinical variables, with 
overlapping confidence intervals across outcomes. AUC 
values range from 0.76 to 0.84 for mortality, 0.75–0.76 for 
clinical outcome, 0.64–0.69 for vasospasm, and 0.71–0.79 
for hydrocephalus. For hydrocephalus in particular, class 
imbalance warrants emphasis on BalAcc (0.60–0.75), Sens 
(0.75–0.82), and Spec (0.44–0.58), with larger confidence 
intervals indicating less reliability.

Figure  6 lower despicts models using only radiomics 
or combining clinical and radiomic data. In the mortal-
ity model, AUC ranges from 0.76 to 0.87, with clinical 

predictions, based on Shapley values from cooperative 
game theory [43].

Furthermore, to enable a robust comparison of model 
results with established scales in the literature, the ictWFNS 
[7] score derived from Subarachnoid Hemorrhage Early 
Brain Edema Score (SEBES) [44]Le Roux [45] and Hij-
dra [13] scales was computed for the cases in the test set 
(n = 41). Logistic regression models will be fitted to assess 
the predictive value of ictWFNS for each clinical outcome.

Results

Dataset characterisation

From an initial cohort of 498 patients (2007–2023), 403 with 
confirmed aneurysmal SAH were included. Early deaths 
and cases with missing outcome data were excluded. As a 
result, the number of patients varied by predictive model: 
194 for poor clinical outcome, 133 for six-month mortality, 
125 for vasospasm (96 clinical, 29 radiological), and 33 for 
long-term hydrocephalus (Fig. 4a).

The training cohort comprised 68.5% females, with a 
mean age of 52 ± 18 years. Hypertension (41.7%), smok-
ing (28.5%), and diabetes (18.6%) were the most frequent 
comorbidities. The majority presented with WFNS grade 1 
(42.6%) and modified Fisher grade 3 (66.5%). Only admis-
sion variables were considered and treatment-related fea-
tures were excluded to ensure prognostic utility. CT images 
were acquired primarily using Philips Brilliance 6 (n = 380), 
with a mean in-plane resolution of 0.46 mm (SD 0.05) and 
slice thickness of 1.97 mm (SD 0.98). Imaging acquisition 
parameters are summarized in Supplemental Fig. 1.

A distinct temporal test set of 41 patients (2023–2024), 
acquired mainly with a different CT scanner than the train-
ing cohort, was used to assess generalizability (Fig.  4b). 
This cohort comprised 14 patients with poor outcome, 13 
deaths, 13 with radiological vasospasm, and 3 with hydro-
cephalus. Most CTs were acquired using GE Revolution 
EVO (n = 38), with a mean pixel size of 0.49 mm (SD 0.04) 
and slice thickness of 1.40 mm (SD 0.88).

The clinical characteristics of the training/validation 
and test cohorts are summarized in Table 1, along with the 
results of a statistical comparison. Significant differences 
were observed between cohorts in the prevalence of hyper-
tension, smoking, and alcoholism, as well as in WFNS and 
modified Fisher grades at admission. Differences were also 
found in age, glucose levels, and platelet counts.

1 3

  528   Page 6 of 15



Neurosurgical Review          (2025) 48:528 

The best-performing configurations generally avoided 
outlier removal, applied data balancing, and used ExtraRF, 
RF, or XGBoost algorithms. Radiomics models typically 
selected 10–30 features, while clinical models used 5–20. 

outcomes from 0.75 to 0.85. Vasospasm AUC ranges from 
0.69 to 0.75, and hydrocephalus ranges from 0.71 to 0.86. In 
hydrocephalus similar trends are observed in BalAcc (0.60–
0.74), Sens (0.65–0.81), and Spec (0.44–0.68).

Fig. 4  Patient selection flow diagram, indicating the distribution of patients across different outcome categories
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of SEBES, Hijdra, and LeRoux scores used to compute the 
ictWFNS.

Finally, Supplemental Figs. 4 and 5 present the F1-score 
and accuracy metrics, along with confusion matrices for 
each outcome, separately for the validation and independent 
test sets.

Models interpretability

Figure 8 shows SHAP value plots for the mortality model 
based on white and gray matter segmentation, which 
achieved the highest AUC. Positive values indicate features 
linked to higher risk, and negative values to better outcomes. 
Features are ranked by impact, with the most relevant at the 
top.

Additional SHAP values are provided in Supplemental 
Fig.  6. In summary, WFNS at admission is the most sig-
nificant feature across all models. Glucose levels are also 
important for most outcomes. Radiomics models show that 
texture-based features in gray and white matter are cru-
cial for predicting clinical outcomes, reflecting structural 
changes in the brain that are key to determining patient 
prognosis and risks.

Discussion

This study assessed the predictive value of radiomics and 
clinical data across multiple outcomes in patients with 
aSAH. Radiomic features were extracted using two segmen-
tation strategies: bleeding and parenchymal tissue (gray and 
white matter). Three types of predictive models were devel-
oped and validated: one based on clinical variables, one 
on radiomics, and one combining both. Machine learning 
models were trained and validated using cross-validation to 
ensure robust performance assessment and to evaluate the 
incremental benefit of integrating radiomics with clinical 
information.

Overall, models demonstrated reasonable perfor-
mance, particularly for mortality and clinical outcomes 
(AUC ~ 85%). Vasospasm prediction was lower (AUC 
75%), while hydrocephalus models still performed well 
despite class imbalance (AUC 86%). Radiomics showed 
comparable performance to clinical models, with overlap-
ping confidence intervals suggesting they can serve as com-
petitive alternatives to traditional clinical predictors.

Importantly, combined models preserved high perfor-
mance on the independent test set (AUCs: 89% mortality, 
87% clinical outcome), though performance dropped for 
vasospasm (− 9%) and hydrocephalus (− 12%), possibly 
reflecting discrepancies in case definitions and variations in 

Supplemental Fig.  2 shows calibration curves and Brier 
scores across cross-validation folds for models using clini-
cal data, radiomics, or both.

Supplemental Fig. 3 presents model performance strati-
fied by age (< 70 vs. ≥70 years). Models consistently per-
formed better in younger patients, with radiomics-based 
models showing smaller AUC differences across age 
groups. Supplemental Table 3 reports model performance 
by clinical grade (WFNS 1–3 vs. 4–5). Models tends to clas-
sify patients with good grades more accurately.

Finally, models combining radiomics and clinical vari-
ables were evaluated on the independent test set (Fig.  7), 
comparing white/gray matter (blue) versus blood segmenta-
tion (green). The highest AUC was observed for mortality 
prediction (0.88 vs. 0.75). For clinical outcome, AUCs were 
0.85 vs. 0.72; for vasospasm and hydrocephalus, 0.62 vs. 
0.58 and 0.71 vs. 0.60, respectively. Blood based models 
showed low sensitivity for vasospasm (e.g., 0.21) and poor 
specificity for hydrocephalus (e.g., 0.33), while white/gray 
matter-based models yielded more robust and balanced per-
formance across all tasks.

To benchmark predictive performance, a logistic regres-
sion using the ictWFNS score (n = 41). As shown in Table 2, 
ictWFNS achieved modest AUCs for mortality (0.70) and 
poor clinical outcome (0.70), but showed limited predic-
tive value for vasospasm (AUC = 0.60) and hydrocephalus 
(AUC = 0.56). In contrast, radiomics-based models demon-
strated superior performance across all outcomes. Table 2 
also reports Sens, Spec and the p-value associated with 
ictWFNS, which reflects the significance of the score as a 
predictor in the logistic regression model. To support repro-
ducibility, a Supplemental Table 4 details the distribution 

Fig. 5  Bland-altman plot comparing bleeding volume (mL) from 
manual and automatic segmentations. The central line shows the mean 
bias; outer lines indicate 95% limits of agreement
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Fig. 6  Model performance was evaluated using AUC, balacc, sens, and 
spec on the test set, with confidence intervals. The upper plot compares 
model performance with clinical data, radiomics from white/gray mat-

ter segmentation, and bleeding region radiomics. The lower plot com-
pares performance using radiomics alone versus combining clinical 
data with radiomics from both regions
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clinical variables. Moreover, imaging protocol heterogene-
ity may have further impacted generalizability.

Given that age is a known prognostic factor in aSAH, 
patients were stratified using a 70-year cutoff. Notably, bet-
ter and more consistent AUCs were observed in younger 
individuals, suggesting greater predictive value of both 
radiomic and clinical features in this group. This finding 
may reflect higher brain reserve in younger patients and 
greater vulnerability to complications in older ones. SEBES 
[44] also shows age-dependent prognostic value, further 
supporting age-based stratification.

From a modeling perspective, tree-based algorithms (RF, 
ExtraTrees, XGBoost) consistently performed well. Clinical 
models typically required 5–20 features, while radiomics 
models used 10–30. Data balancing improved performance, 
whereas outlier removal had minimal impact. However, 
including too many features increased overfitting risk and 
reduced generalizability.

Radiomics models based on bleeding segmentation per-
formed similarly to parenchymal models during cross-val-
idation but showed lower performance in the independent 
test set. Although bleeding segmentation was included for its 
clinical relevance to vasospasm and hydrocephalus, it often 

Table 2  Predictive outcome performance of IctWFNS and brain 
radiomics-based models in the test cohort (n = 41)
Outcome Model AUC Sens. Spec. p-value 

ictWFNS*
Mortality ictWFNS 0.696 0.455 0.947 0.049

Brain 
radiomics 
model

0.89 0.78 0.98 —

Clinical 
Outcome

ictWFNS 0.699 0.625 0.643 0.044
Brain 
radiomics 
model

0.87 0.88 0.82 —

Vasospasm ictWFNS 0.596 0.500 0.615 0.243
Brain 
radiomics 
model

0.66 0.66 0.62 —

Hydrocephalus ictWFNS 0.560 0.000 1.000 0.726
Brain 
radiomics 
model

0.72 0.75 0.69 —

*p-value from logistic regression. Not applicable for non-parametric 
radiomics models

Fig. 7  Model performance results on the independent test set. The models combined radiomic and clinical data. Blue bars represent results based 
on radiomics from gray and white matter, whereas green bars correspond to features extracted from bleeding segmentations
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ictWFNS across all outcomes, particularly for mortality 
(AUC 0.89) and poor clinical outcome (AUC 0.87). Nev-
ertheless, these results are limited by the small test cohort 
(n = 41), and validation in larger, multicenter populations 
is warranted. To further contextualize our results, Table 3 
compares the performance of our parenchymal radiomics–
clinical model with that of previously published models 
based on traditional grading scales.

Radiomics models demonstrate moderate to strong 
predictive performance compared to traditional grading 
systems like WFNS and Fisher in aSAH. For 6-month 
mortality, radiomics models yield balanced sensitivity 
(0.75) and specificity (0.76), whereas WFNS shows high 
sensitivity (0.89) but low specificity (0.19), and hWFNS 
improves specificity (0.93) at the expense of sensitivity 
(0.44) [50]. Thus, radiomics offer more balanced discrimi-
nation. For clinical outcome, radiomics outperform WFNS 
and modWFNS [51]achieving an AUC of 0.85. They also 
show competitive AUCs for vasospasm (0.75) [52] and 
hydrocephalus (0.86) [53]. Importantly, radiomics models 

overestimated blood volume, introducing bias and limiting 
predictive value. In contrast, parenchymal features proved 
more consistent and predictive, especially for mortality and 
clinical outcomes. This illustrates a trade-off: bleeding seg-
mentation is faster but less reliable, whereas parenchymal 
segmentation is more robust but resource-intensive.

Clinical and radiomics models demonstrated similar 
predictive power both individually and in combination. 
Radiomics are particularly valuable in scenarios where clin-
ical information is incomplete, missing, or unreliable, such 
as in emergency settings or retrospective studies. In such 
cases, radiomics-derived models could serve as a viable 
alternative for early risk stratification, as they rely solely on 
routinely acquired CT scans. This expands their applicabil-
ity and highlights their potential role in automated, repro-
ducible, and scalable decision-support systems.

To benchmark model performance, the ictWFNS [7] score 
was calculated in the independent test cohort. It showed 
moderate AUCs (~ 0.70) for mortality and poor outcome 
but lower predictive value for vasospasm and hydrocepha-
lus. By comparison, radiomics-based models outperformed 

Fig. 8  SHAP values diagrams for predicting mortality from white and grey matter segmentation models using (a) clinical, (b) radiomics and (c) 
combining both as input
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Despite these promising results, this study has limita-
tions. Its retrospective, single-center design may introduce 
selection bias and limit generalizability. The small sample 
size and class imbalance reduce statistical power and may 
affect model calibration, despite the use of oversampling 
and cross-validation. The high dimensionality of radiomic 
data increases the risk of overfitting, and although MRMR 
was used for feature selection, other strategies were not 
explored.

Moreover, the limited test cohort, particularly in sub-
groups like hydrocephalus, further constrains performance 
estimates. Radiomic features are sensitive to acquisition 
parameters and artifacts; no scanner harmonization was 
applied, and potential confounders such as dental implants 
were not evaluated.

The automatic bleeding segmentation consistently over-
estimated hemorrhage volume by an average of 25 mL com-
pared to reference annotations. In addition, the algorithm 
appeared to miss or under-segment some smaller hemor-
rhages, which may have further impacted the reliability of 
radiomic features. Improving segmentation accuracy via 
algorithm refinement, alternative models, or manual correc-
tion is essential to enhance model reliability.

Treatment variables were not included, and the test set, 
though temporally independent, came from the same center. 
Also, outcome definitions, especially for vasospasm, may 
vary and affect generalizability. Thus, external multicenter 
validation is needed. Additionally, the analysis did not strat-
ify performance by sociodemographic factors beyond age 
and sex. Future research should address these gaps, promote 
protocol harmonization, and prioritize clinical translation.

In conclusion, combining radiomics with clinical data 
holds promise for real-time risk stratification, personalized 
follow-up, and early intervention. Prospective validation, 
harmonization frameworks, and implementation pathways 
will be essential for successful clinical integration.

Conclusions

This study demonstrates that radiomics derived from both 
brain parenchyma and hemorrhage segmentation can pre-
dict key outcomes in aSAH with performance comparable to 
established clinical models. Radiomics- and clinical-based 
models yielded AUCs exceeding 85% for mortality and poor 
clinical outcome, while models for vasospasm and hydro-
cephalus also achieved satisfactory performance despite 
class imbalance (AUCs of 75% and 86%, respectively).

Gray and white matter segmentation generally provided 
superior predictive performance compared to bleeding-
based approaches, though both were effective. Interpretabil-
ity analysis identified relevant radiomic and clinical features 

support longer prediction windows, enabling broader clini-
cal decision-making.

SHAP analysis enhanced model interpretability by 
highlighting key radiomic features contributing to predic-
tions. Among them, third-order texture descriptors were the 
most influential, potentially capturing tissue heterogeneity, 
edema, or complex hemorrhagic patterns [54, 55]. However, 
these interpretations remain hypothetical and requires fur-
ther validation.

Clinical features also contributed meaningfully. The 
WFNS score at admission consistently appeared as the 
most impactful feature, in line with its well-established 
prognostic value [3, 56]. Other relevant predictors included 
modified Fisher grade, glucose levels, age, smoking status, 
lymphocyte count, and neutrophil count. Their consistent 
importance across models and alignment with prior studies 
reinforce the robustness and clinical relevance of our find-
ings [57, 58].

Unlike previous studies focused solely on bleeding-based 
radiomics [59, 60]this work systematically compared bleed-
ing and parenchymal segmentation. Radiomics from gray 
and white matter yielded superior and more generalizable 
performance, underscoring their added value in outcome 
prediction.

Table 3  Comparative performance of proposed models and published 
studies in predicting key outcomes in aSAH, including AUC, sensitiv-
ity, and specificity where reported
Outcome Metric Radiomics-

Based 
Models

WFNS / 
Fisher-Based 
Studies

Reference

Mortality Sens and 
Spec

Sens 0.75 
Spec 0.76
at 6 months

WFNS Sens 
0.89, Spec 
0.19
hWFNS Sens 
0.44, Spec 
0.93
at 6 months

Raabe et 
al. 2022 
[50]

Clinical 
Outcome

AUC 0.85
At 6 
months

WFNS 
AUC ~ 0.837;
modWFNS 
AUC ~ 0.839;
At 3 months

Nguyen et 
al., 2023; 
Hofmann 
et al., 
2023 [51]

Vasospasm AUC 0.75
At 6 
months

Fisher/modi-
fied Fisher 
AUC ~ 0.65–
0.70
At 3 months

Couret et 
al., 2024 
[52]

Hydrocephalus AUC 0.86
At 6 
months

Intraventricu-
lar Hemor-
raghe score 
AUC ~ 0.85 
at 3 months
modified 
Fisher 
AUC ~ 0.81
At 1 month

Couret et 
al., 2024 
[52]
Rao et al. 
2024 [53]

1 3

  528   Page 12 of 15



Neurosurgical Review          (2025) 48:528 

use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

References

1.	 Psychogios K, Tsivgoulis G, FEAN FESO (2019) Subarachnoid 
hemorrhage, vasospasm, and delayed cerebral ischemia. Pract 
Neurol 9:37–41

2.	 Singer RJ, Ogilvy CS, Rordorf G et al (2021) Aneurysmal sub-
arachnoid hemorrhage: Treatment and prognosis

3.	 Teasdale GM, Drake CG, Hunt W et al (1988) A universal sub-
arachnoid hemorrhage scale: report of a committee of the world 
federation of neurosurgical societies. J Neurol Neurosurg Psy-
chiatry 51(11):1457

4.	 Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vaso-
spasm to subarachnoid hemorrhage visualized by computerized 
tomographic scanning. Neurosurgery 6(1):1–9

5.	 Frontera JA, Claassen J, Schmidt JM, Wartenberg KE, Temes R, 
Connolly ES, Mayer SA (2006) Prediction of symptomatic vaso-
spasmafter subarachnoid hemorrhage: the modified fisher scale. 
Neurosurgery 59(1):21–27

6.	 van Donkelaar CE, Bakker NA, Veeger NJ, Uyttenboogaart M, 
Metzemaekers JD, Eshghi O, van Dijk JMC (2017) Prediction 
of outcome after subarachnoid hemorrhage: timing of clinical 
assessment. J Neurosurg 126(1):52–59

7.	 Hofmann BB, Fischer I, Neyazi M, Karadag C, Donaldson DM, 
Abusabha Y, Hänggi D (2022) Revisiting the WFNS score: 
native computed tomography imaging improves identification of 
patients with false poor grade aneurysmal subarachnoid hemor-
rhage. Neurosurgery, 10–1227

8.	 Gillies RJ, Kinahan PE, Hricak H, Radiomics (2016) Images are 
more than pictures, they are data. Radiology 278(2):563–577

9.	 Park YW, Kim B, Park JE et al (2021) Radiomics prognostica-
tion model in acute subarachnoid hemorrhage using initial non-
contrast CT. Sci Rep 11(1):1–10

10.	 Jennett B, Bond M (1975) Assessment of outcome after severe 
brain damage. A practical scale. Lancet 1(7905):480–484

11.	 Maas AI, Hukkelhoven CW, Marshall LF et al (2005) Prediction 
of outcome in traumatic brain injury with computed tomographic 
characteristics: a comparison between the computed tomographic 
classification and combinations of computed tomographic predic-
tors. Neurosurgery 57(6):1173–1182

12.	 Jiménez-Roldán L, Alén JF, Gómez PA et al (2013) Volumetric 
analysis of subarachnoid hemorrhage: assessment of the reliabil-
ity of two computerized methods and their comparison with other 
radiographic scales. J Neurosurg 118(1):84–93

13.	 Hijdra A, van Gijn J, Nagelkerke NJ et al (1988) Prediction of 
delayed cerebral ischemia, rebleeding, and outcome after aneu-
rysmal subarachnoid hemorrhage. Stroke 19:1250–1256

14.	 Lagares A, Gómez PA, Lobato RD et al (2001) Prognostic factors 
on hospital admission after spontaneous subarachnoid haemor-
rhage. Acta Neurochir (Wien) 143(7):665–672

15.	 Lagares A, Jiménez-Roldán L, Gómez PA et al (2015) Prognos-
tic value of the amount of bleeding after aneurysmal subarach-
noid hemorrhage: a quantitative volumetric study. Neurosurgery 
77(6):898–907

16.	 Sheehan JP, Polin RS, Sheehan JM, Baskaya MK, Kassell NF 
(1999) Factors associated with hydrocephalus after aneurysmal 
subarachnoid hemorrhage. Neurosurgery 45(5):1120

17.	 Kouskouras C, Charitanti A, Giavroglou C, Foroglou N, Sel-
viaridis P, Kontopoulos V, Dimitriadis AS (2004) Intracranial 

associated with worse prognosis, consistent with previous 
evidence.

These findings support the integration of radiomics into 
prognostic modeling for aSAH. Future work should focus 
on refining bleeding segmentation accuracy, validating 
results in external cohorts, and evaluating clinical applica-
bility to facilitate adoption in decision support systems and 
precision medicine strategies.

Supplementary Information  The online version contains 
supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​0​1​4​3​-​0​
2​5​-​0​3​6​7​9​-​8.

Acknowledgements  We would like to thank the team at Quibim S.L. 
for their assistance in securely storing and anonymizing the images. 
We also extend our gratitude to the neurosurgeons at Hospital Univer-
sitario 12 de Octubre for collecting the clinical data used in this study.

Author contributions  All authors contributed to the study conception 
and design. Methodology and formal analysis were carried out by 
G.U., E.J., and A.L. G.U. and A.L. were responsible for data curation. 
M.M.-L., E.S., and C.S. participated in the investigation. Resources 
were provided by A.R., C.L., and A.L. Validation was performed by 
A.M.C.-L., C.S., E.J., and A.L. Project administration was overseen 
by A.L. Supervision was provided by E.J. and A.L. The original draft 
was written by G.U., and the manuscript was reviewed and edited by 
A.M.C.-L., E.J., and A.L.

Funding  Open Access funding provided thanks to the CRUE-CSIC 
agreement with Springer Nature. Open Access funding provided 
thanks to the CRUE-CSIC agreement with Springer Nature. The au-
thors declare that no funds, grants, or other support were received dur-
ing the preparation of this manuscript.

Data availability  No datasets were generated or analysed during the 
current study.

Declarations

Ethics approval and consent to participate  This study was performed 
in line with the principles of the Declaration of Helsinki. Approval was 
granted by the Ethics Committee for Research with Medicinal Prod-
ucts of Hospital Universitario 12 de Octubre (Nº CEIm: 19/078).

Consent for publication  Not applicable. This manuscript does not con-
tain any individual person’s data in any form.

Patient consent  The requirement for patient consent was waived by 
the institutional ethics committee.

Competing interests  The authors declare no competing interests.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 

1 3

Page 13 of 15    528 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10143-025-03679-8
https://doi.org/10.1007/s10143-025-03679-8


Neurosurgical Review          (2025) 48:528 

39.	 Powers DM, Evaluation (2020) From precision, recall and f-mea-
sure to roc, informedness, markedness and correlation. J Mach 
Learn Technol 2(1):37–63

40.	 Altman DG (1994) Practical statistics for medical research. CRC
41.	 DeGroot MH, Fienberg SE (1983) The comparison and evalua-

tion of forecasters. Stat 32(1/2):12–22
42.	 Brier GW (1950) Verification of forecasts expressed in terms of 

probability. Mon Weather Rev 78(1):1–3
43.	 Lundberg SM, Lee SI (2017) A unified approach to interpreting 

model predictions. In: Adv Neural Inf Process Syst;:30
44.	 Said, M., Gümüs, M., Herten, A., Dinger, T. F., Chihi, M., Dark-

wah Oppong, M.,… Jabbarli,R. (2021). Subarachnoid Hem-
orrhage Early Brain Edema Score (SEBES) as a radiographic 
marker of clinically relevant intracranial hypertension and unfa-
vorable outcome after subarachnoid hemorrhage. European Jour-
nal of Neurology, 28(12), 4051–4059.

45.	 LeRoux PD, Elliott JP, Newell DW, Grady MS, Winn HR (1996) 
Predicting outcome in poor-grade patients with subarachnoid 
hemorrhage: a retrospective review of 159 aggressively managed 
cases. J Neurosurg 85(1):39–49. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​3​1​​​7​1​/​​​j​n​s​.​1​​9​9​​6​
.​​8​5​.​1​.​0​0​3​9

46.	 Boers AM, Zijlstra IA, Gathier CS et al (2014) Automatic quan-
tification of subarachnoid hemorrhage on Noncontrast CT. Am J 
Neuroradiol 35(12):2279–2286

47.	 Wang T, Song N, Liu L et al (2021) Efficiency of a deep learn-
ing-based artificial intelligence diagnostic system in spontane-
ous intracerebral hemorrhage volume measurement. BMC Med 
Imaging 21:1–9

48.	 Awe OO, Gonzalez LF, Hasan D, Maltenfort M, Rossenwasser R, 
Jabbour P (2011) Treatment outcome of aneurysmal subarachnoid 
hemorrhage in patients aged 70 years and older. Neurosurgery 
68(3):753–758

49.	 Park J, Woo H, Kang DH, Kim Y (2014) Critical age affecting 
1-year functional outcome in elderly patients aged ≥ 70 years 
with aneurysmal subarachnoid hemorrhage. Acta Neurochir 
156:1655–1661

50.	 Raabe, A., Beck, J., Goldberg, J., Z´ Graggen, W. J., Branca, M., 
Marbacher, S.,…Fung, C. (2022). Herniation world federation of 
neurosurgical societies scale improves prediction of outcome in 
patients with poor-grade aneurysmal subarachnoid hemorrhage.
Stroke, 53(7), 2346–2351.

51.	 Nguyen TA, Mai TD, Vu LD, Dao CX, Ngo HM, Hoang HB et al 
(2023) Validation of the accuracy of the modified world federa-
tion of neurosurgical societies subarachnoid hemorrhage grading 
scale for predicting the outcomes of patients with aneurysmal 
subarachnoid hemorrhage. PLoS ONE 18(8):e0289267

52.	 Couret, D., Boussen, S., Cardoso, D., Alonzo, A., Madec, S., 
Reyre, A.,… Velly, L.(2024). Comparison of scales for the evalu-
ation of aneurysmal subarachnoid haemorrhage:a retrospective 
cohort study. European Radiology, 34(11), 7526–7536.

53.	 Rao, D., Yang, L., Enxi, X., Siyuan, L., Yu, Q., Zheng, L.,… Eryi, 
S. (2024). A predictive model in patients with chronic hydroceph-
alus following aneurysmal subarachnoid hemorrhage:a retrospec-
tive cohort study. Frontiers in Neurology, 15, 1366306.

54.	 Sander Connolly A Jr, Rabinstein J, Ricardo Carhuapoma et al 
(2012) Guidelines for the management of aneurysmal subarach-
noid hemorrhage: a guideline for healthcare professionals from 
the American heart association/american stroke association. 
Stroke 43(6):1711–1737

55.	 Starke RM, Komotar RJ, Otten ML et al (2008) Establishing pre-
dictors of long-term outcome in subarachnoid hemorrhage. Neu-
rosurg Clin North Am 19(4):543–550

56.	 Lagares A, Gómez PA, Alén JF et al (2002) Global cerebral 
edema after subarachnoid hemorrhage. Stroke 33(11):2614–2619

57.	 Shi M, Yang C, Tang QW et al (2021) The prognostic value of 
neutrophil-to-lymphocyte ratio in patients with aneurysmal 

aneurysms: evaluation using CTA and MRA. Correlation with 
DSA and intraoperative findings. Neuroradiology 46:842–850

18.	 Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon 
WP (2006) Vasospasm after subarachnoid hemorrhage: utility of 
perfusion CT and CT angiography on diagnosis and management. 
Am J Neuroradiol 27(1):26–34

19.	 Kirkwood BR, Sterne JA (2010) Essential medical statistics. 
Wiley

20.	 van Buuren S (2007) Multiple imputation of discrete and continu-
ous data by fully conditional specification. Stat Methods Med Res 
16(3):219–242

21.	 Lawton MT, Vates GE (2017) Subarachnoid hemorrhage. N Engl 
J Med 377(3):257–266

22.	 Cahill WJ, Calvert JH, Zhang JH (2006) Mechanisms of early 
brain injury after subarachnoid hemorrhage. J Cereb Blood Flow 
Metab 26(11):1341–1353

23.	 Powell J, Kitchen N, Heslin J et al (2002) Psychosocial outcomes 
at three and nine months after good neurological recovery from 
aneurysmal subarachnoid haemorrhage: predictors and progno-
sis. J Neurol Neurosurg Psychiatry 72(6):772–781

24.	 Brudfors M, Balbastre Y, Flandin G et al (2020) Flexible bayes-
ian modelling for nonlinear image registration. In: International 
Conference on Medical Image Computing and Computer-Assisted 
Intervention;:253–263

25.	 Brudfors M, University College London) (2020) Generative Mod-
els for Preprocessing of Hospital Brain Scans. PhD thesis, UCL (; 
Wellcome Centre for Human Neuroimaging. Welcome to spm12. 
Functional Imaging Laboratory; 2014. Accessed: 2024-07-08

26.	 Klauschen F, Goldman A, Barra V et al (2009) Evaluation of 
automated brain MR image segmentation and volumetry meth-
ods. Hum Brain Mapp 30(4):1310–1327

27.	 Schmitter D, Roche A, Maréchal B et al (2015) An evaluation 
of volume-based morphometry for prediction of mild cognitive 
impairment and alzheimer’s disease. NeuroImage Clin 7:7–17

28.	 García García S, Cepeda S, Arrese I et al (2023) A fully auto-
mated pipeline using swin transformers for deep learning-based 
blood segmentation on head ct scans after aneurysmal subarach-
noid hemorrhage. arXiv preprint arXiv:2312.17553

29.	 Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computa-
tional radiomics system to Decode the radiographic phenotype. 
Cancer Res 77(21):e104–e107

30.	 Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J., 
Andrearczyk, V., Apte,A.,… Löck, S. (2020). The image bio-
marker standardization initiative: standardized quantitative 
radiomics for high-throughput image-based phenotyping. Radiol-
ogy, 295(2), 328–338.

31.	 Peng H, Long F, Ding C (2005) Feature selection based on 
mutual information: criteria of max-dependency, max-relevance, 
and min-redundancy. IEEE Trans Pattern Anal Mach Intell 
27(8):1226–1238

32.	 Breiman L (2001) Random forests. Mach Learn 45(1):5–32
33.	 Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized 

trees. Mach Learn 63(1):3–42
34.	 Chen T, Guestrin C, Xgboost (2016) A scalable tree boosting sys-

tem. In: Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining;:785–794

35.	 Bergstra J, Bengio Y (2012) Random search for hyper-parameter 
optimization. J Mach Learn Res 13(Feb):281–305

36.	 Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Proceed-
ings of the 2008 Eighth IEEE International Conference on Data 
Mining;:413–422

37.	 He H, Bai Y, Garcia EA et al (2008) Adasyn: Adaptive synthetic 
sampling approach for imbalanced learning. In: 2008 IEEE Inter-
national Joint Conference on Neural Networks;:1322–1328

38.	 Kramer O, Kramer O (2016) Scikit-learn. Mach Learn Evol Strat-
egies, 45–53

1 3

  528   Page 14 of 15

https://doi.org/10.3171/jns.1996.85.1.0039
https://doi.org/10.3171/jns.1996.85.1.0039


Neurosurgical Review          (2025) 48:528 

60.	 Pei L, Fang T, Xu L et al (2024) A radiomics model based on 
CT images combined with multiple machine learning models to 
predict the prognosis of spontaneous intracerebral hemorrhage. 
World Neurosurg 181:e856–e866

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

subarachnoid hemorrhage: a systematic review and meta-analysis 
of observational studies. Front Neurol 12:745560

58.	 Kruyt ND, Biessels GJ, DeVries JH et al (2010) Hyperglycemia 
in aneurysmal subarachnoid hemorrhage: a potentially modifi-
able risk factor for poor outcome. J Cereb Blood Flow Metab 
30(9):1577–1587

59.	 Zhong J, Jiang Y, Huang Q et al (2024) Diagnostic and predic-
tive value of radiomics-based machine learning for intracranial 
aneurysm rupture status: a systematic review and meta-analysis. 
Neurosurg Rev 47(1):1–14

1 3

Page 15 of 15    528 


	﻿Comprehensive predictive modeling in subarachnoid hemorrhage: integrating radiomics and clinical variables
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Patient cohort and inclusion criteria
	﻿Outcome definitions
	﻿Clinical and image data preprocessing and feature engineering
	﻿Clinical data and preprocessing
	﻿Image segmentation


	﻿Image preprocessing
	﻿Radiomics feature extraction
	﻿Feature engineering
	﻿Model development and evaluation
	﻿Results
	﻿Dataset characterisation



