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Abstract

Subarachnoid hemorrhage (SAH) is a severe condition with high morbidity and long-term neurological consequences.
Radiomics, by extracting quantitative features from Computed Tomograhpy (CT) scans, may reveal imaging biomarkers
predictive of outcomes. This study evaluates the predictive value of radiomics in SAH for multiple outcomes and com-
pares its performance to models based on clinical data.Radiomic features were extracted from admission CTs using seg-
mentations of brain tissue (white and gray matter) and hemorrhage. Machine learning models with cross-validation were
trained using clinical data, radiomics, or both, to predict 6-month mortality, Glasgow Outcome Scale (GOS), vasospasm,
and long-term hydrocephalus. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature contributions.
The training dataset included 403 aneurysmal SAH patients; GOS predictions used all patients, while vasospasm and
hydrocephalus predictions excluded those with incomplete data or early death, leaving 328 and 332 patients, respectively.
Radiomics and clinical models demonstrated comparable performance, achieving in validation set AUCs more than 85%
for six-month mortality and clinical outcome, and 75% and 86% for vasospasm and hydrocephalus, respectively. In an
independent cohort of 41 patients, the combined models yielded AUCs of 89% for mortality, 87% for clinical outcome,
66% for vasospasm, and 72% for hydrocephalus. SHAP analysis highlighted significant contributions of radiomic features
from brain tissue and hemorrhage segmentation, alongside key clinical variables, in predicting SAH outcomes.This study
underscores the potential of radiomics-based approaches for SAH outcome prediction, demonstrating predictive power
comparable to traditional clinical models and enhancing understanding of SAH-related complications.

Clinical trial number Not applicable.

Keywords Radiomics - Machine learning - Subarachnoid hemorrhage - Glasgow outcome scale - Hydrocephalus -
Vasospasm

Introduction

Nontraumatic subarachnoid hemorrhage (SAH) is a hemor-
rhagic stroke caused primarily by the rupture of an intra-
cranial aneurysm, associated with high early mortality
and complications such as vasospasm, hydrocephalus, and
rebleeding [1, 2]. Cranial Computerized Tomography (CT)
scans are the diagnostic cornerstone and provide essential
information for early risk stratification.

Grading systems such as the Glasgow Coma Scale (GCS)
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[3]the World Federation of Neurosurgical Societies (WFNS)
[4] scale and the Fisher scale [5] are widely used to assess
severity and predict outcomes in aneurysmal SAH (aSAH).
The modified Fisher scale incorporates intraventricular
hemorrhage, improving the prediction of vasospasm [6].
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More recently, combined models that integrate clinical sta-
tus and CT findings, such as the ictWFNS, have shown good
prognostic performance and enhanced early risk stratifica-
tion [7]. However, these approaches rely on visual assess-
ment and predefined qualitative thresholds, which may not
capture the full complexity of the pathophysiological pro-
cess or subtle image-based biomarkers.

Radiomics refers to extracting quantitative data from
medical images, revealing hidden information that enhances
diagnosis, prognosis, and treatment planning. These features
include shape, texture, intensity, and spatial relationships of
pixels or voxels within the images. Radiomics has shown
promise in oncology, neurology, and cardiology [8, 9].

This study assesses the prognostic value of combining
radiomic features and clinical variables to predict key out-
comes in aSAH patients. Machine learning models were
used to predict mortality, clinical outcome (GOS) [10, 11]
vasospasm, and hydrocephalus, based on features extracted
from bleeding regions and brain parenchyma in initial CT
scans.

Given the heterogeneity of aSAH outcomes, different pre-
dictors may be relevant depending on the endpoint. Clinical
outcome and mortality are often influenced by hemorrhagic
burden and ischemic parenchymal injury [12]while vaso-
spasm is more closely related to cisternal blood, as captured
by the modified Fisher scale [13, 14]. Hydrocephalus is typ-
ically linked to intraventricular hemorrhage and impaired
CSF circulation [15]. These considerations motivated the
inclusion of both bleeding and parenchymal segmentations
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Fig. 1 Methodology workflow: Starting from a CT scan, gray mat-
ter, white matter, and lesions are segmented. radiomic features are
extracted and combined with clinical data for modeling using 5-fold
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in our models. We further evaluate model performance
across input configurations and assess interpretability.

Materials and methods

This section describes the dataset analysis (clinical vari-
ables and CT images), ROI segmentation (white matter,
gray matter, bleeding), radiomic feature extraction, and the
methodology for model development, evaluation, and inter-
pretation, as shown in Fig. 1.

Patient cohort and inclusion criteria

A retrospective dataset of 403 patients was collected from
Hospital 12 de Octubre, a single tertiary care center in
Madrid, Spain, spanning the period from 2007 to 2023, and
was used for model development. Subsequently, an inde-
pendent dataset comprising 41 patients from 2023 to 2024
was used to evaluate model performance on a more recent
cohort, simulating a temporal validation scenario. Inclusion
criteria were:

e Diagnosis of spontaneous aSAH confirmed by non-con-
trast head CT.

o Identification of the causative aneurysm via Computed
Tomography Angiography (CTA) and/or Digital Sub-
traction Angiography (DSA) during hospitalization [17].
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cross-validation. Finally, model interpretability highlights key features
and performance metrics
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e Availability of baseline CT images and complete clini-
cal data at admission.

Exclusion criteria included:

e SAH secondary to trauma or non-aneurysmal causes.
e Lack of follow-up at 6 months post-event.

All CT images were acquired at the time of initial diag-
nosis. Clinical variables were extracted from electronic
health records documented at initial presentation. Out-
comes, including mortality and shunt requirements, were
based on follow-up reports. While assessors were not for-
mally blinded, these outcomes are objective and routinely
documented.

All procedures were part of routine clinical care. Given
the retrospective design and use of de-identified data, the
study was exempt from formal ethical approval, and the
requirement for patient consent was waived by the insti-
tutional ethics committee. Clinical and imaging data were
pseudonymized and uploaded to the QUIBIM Precision®
V3.0.3 platform (Quibim, Valencia, Spain), specifically des-
ignated for this study.

Outcome definitions

The primary assessed outcome was the GOS at six months,
with two classification tasks:

e C(linical outcome prediction:

— Good outcome: GOS 4-5 (moderate disability or
good recovery).

— Poor outcome: GOS 1-3 (severe disability, vegeta-
tive state, or death).

e Mortality prediction:

- Survived: GOS>2.
—  Death: GOS=1.

Two additional binary outcomes were included:

e Vasospasm (yes/no): Presence of clinical and radiologi-
cal findings of cerebral vasospasm.

— Clinical criteria: New focal neurological deficits or
decreased consciousness, not attributable to rebleed-
ing, hydrocephalus, or seizures.

— Radiological criteria: Vessel narrowing observed on
CTA and/or DSA and attributed to vasospasm by the
neuroradiologist [18].

e Hydrocephalus (yes/no): Symptomatic ventricular en-
largement requiring definitive cerebrospinal fluid shunt-
ing, including cases not tolerating external ventricular
drainage during hospitalization or within the six-month
follow-up.

Clinical and image data preprocessing and feature
engineering

Clinical data and preprocessing

The database initially included 48 clinical variables recorded
at hospital admission. Variables with more than 15% miss-
ing data were excluded from further analysis. This process
resulted in a final set of 20 clinical variables summarized in
Table 1, and definitions along with diagnostic thresholds for
comorbidities are detailed in Supplemental Table 1.

A comparative statistical analysis was performed between
the training and validation dataset and the test set. Categori-
cal variables were analyzed with the Chi-squared test, and
effect size was measured using Phi for 2 x2 tables and Cra-
mér’s V for larger tables. Continuous variables were com-
pared with independent t-tests, and Cohen’s d as used for
effect size. A significance level of P=.05 was applied [19].

Missing data were handled using Multiple Imputation by
Chained Eq. [20] (MICE), with linear regression for contin-
uous variables and logistic regression for categorical ones.
Five imputations were performed to improve reliability and
validity.

Image segmentation

Radiomics features were extracted from gray matter, white
matter, and bleeding segmentations, as these regions can
influence patient outcomes [21-23]. CTSeg, an atlas-based
algorithm for brain CT segmentation [24, 25] was used to
classify six regions: gray matter, white matter, cerebrospinal
fluid, skull, soft tissue, and background. Based on SPM12
tool, CTSeg has been validated in numerous studies [26,
27]. Blood regions are often classified as cerebrospinal
fluid, which is unlikely to significantly affect the radiomics
from gray and white matter. Figure 2 shows the segmenta-
tion of these regions and the HSA, with a bounding box,
from two randomly selected cases.

Bleeding segmentation was performed with a pretrained
Vision Transformer (ViT) model [28]. Images were pre-
processed to exclude the skull, and lesion segmentation
was validated against manual semiautomated volumes
from 255 patients [12]. Two validation approaches were
used for bleeding automated segmentation: first, a clinical
database parameter derived from semi-automated manual
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Table 1 Clinical characteristics of  variable Train/Validation  Test p-value Effect Size  Significant?
patients in the traini‘ng/val'ide.ltion Categorical Variables (%) Phi/
and testv datasets, with statistical Cramer’s V
comparison

Gender (Female) 68.5% 58.5% 0.05 0.15 No
Hypertension (Yes) 41.7% 51.2% 0.03 0.22 Yes
Smoking (Yes) 28.5% 43.9% 0.01 0.31 Yes
Diabetes (Yes) 18.6% 14.6% 0.33 0.10 No
Dyslipidemia/Obesity (Yes) 17.9% 48.8% 0.00 0.64 Yes
Alcoholism (Yes) 5.7% 14.6% 0.01 0.27 Yes
WENS score (>4) 38.4% 61.0% 0.00 0.54 Yes
Modified Fisher (>3) 79.4% 90.2% 0.03 0.21 Yes
Posterior circulation 9.0% 0% 0.04 0.24 Yes
Numerical Variables (Mean+SD) Cohen’s D

Age (years) 52418 59+14  0.03 -0.43 Yes
Glucose (mg/dL) 151£56 186+£63 0.02 -0.58 Yes
Platelets (10°/L) 698+101 238+53  0.00 5.69 Yes

Patient 300

Patient 302

Fig. 2 Brain tissue segmentation using CTseg. The right column for each patient shows the original image with the brain segmentation. In the left

column, the bleeding segmentation is also represented

segmentation [12, 15] and second, a review by an experi-
enced neurosurgeon.

Image preprocessing
CT images were resampled to 1 x1x1 mm? isotropic vox-
els. Intensity values were discretized with a fixed bin width

of 25 Hounsfield units to ensure reproducibility across
scans. Z-score normalization was applied to all images prior
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to radiomics feature extraction, standardizing intensity dis-
tributions across all patients.

Radiomics feature extraction

Radiomics features were extracted from brain tissue and
bleeding segmentation using PyRadiomics v3.0.1 [29], fol-
lowing IBSI guidelines [30]. A total of 1379 radiomic fea-
tures were extracted per region: 14 shape, 18 first-order, and
73 s-order features, with an additional 1365 derived from



Neurosurgical Review (2025) 48:528

Page50f 15 528

filtered images using five filter types (square, exponen-
tial, logarithm, eight-level Haar wavelet, and Laplacian of
Gaussian with 6=0.5, 3.0, and 5.0).

Radiomics from gray and white matter were com-
bined to create a brain tissue signature. Predictive models
were developed separately for brain tissue and bleeding
radiomics, enabling comparison of their clinical utility.

Models were developed using three feature sets: clinical
variables only (20 features), radiomics only, and a combi-
nation of both. Radiomics-only models included 1,379 fea-
tures for bleeding segmentation and 2,758 for gray/white
matter segmentation. Combined models integrated clinical
variables with 1,399 (bleeding) and 2,778 (gray/white mat-
ter) features, respectively.

Feature engineering

Spearman correlation analysis was performed to iden-
tify highly correlated features within both clinical and
radiomic datasets. Features with a correlation above 90%
were excluded to prevent redundancy. Additionally, feature
selection was performed using the Minimum Redundancy
Maximum Relevance (MRMR) [31] method within each
cross-validation fold, ensuring that only the most informa-
tive and non-redundant features were retained for model
development.

Model development and evaluation

Model development followed a 5-fold stratified cross-val-
idation. In each fold, 80% of the data was used for model
development, with internal validation for tuning, and 20%
as test set. All steps were confined to training data to prevent
information leakage.

To clarify the terminology: the training set is used for
model fitting, including feature selection and hyperparam-
eter tuning; the validation set is an internal split within the
training data for tuning during cross-validation; the test set
refers to the held-out fold in 5-fold cross-validation, used to
assess performance on unseen data; and the independent

5 Stratified K-Fold cross validation

test cohort is a separate external dataset of 41 patients
(2023-2024), excluded from model development, used to
evaluate generalizability.

Figure 3 illustrates the model development methodology.
For each fold:

1. Algorithms:

2. Random Forest [32] (RF) Extra Trees Classifier
[33] (ExtraRF) and Extreme Gradient Boosting [34]
(XGBoost) were tested.

3. Feature Selection: MRMR [31] was used to select 5-20
features for clinical models and 5-30 for radiomics
models.

4. Hyperparameter Tuning: Grid search [35] optimized
hyperparameters using AUC as the metric.

5. Outlier Removal: Isolation Forest [36] was tested for
detecting and removing outliers.

6. Data Balancing: ADASYN [37] was applied to
improve class balance, tested with and without usage.

The entire procedure was repeated using three random seeds
to assess the consistency and robustness of the results.

The best-performing configuration in each fold was
selected based on validation AUC. Performance was reported
as the average and 95% confidence intervals across folds
and seeds. Additionally, each model obtained during cross-
validation (across folds and seeds) was evaluated on the
independent test cohort to assess temporal generalizability.

Model predictions were generated using probability out-
puts from scikit-learn [38] and XGBoost APIs [33]. Besides
AUC, metrics such as Balanced Accuracy (BalAcc), Sen-
sitivity (Sens), and Specificity (Spec), F1-Score, Accuracy
(Acc) and confusion matrices were monitored [39, 40]. Cal-
ibration curves [41] and Brier scores [42] were also com-
puted to evaluate the reliability and accuracy of predicted
probabilities.

SHAP (SHapley Additive exPlanations) values are
a method for interpreting machine learning models by
fairly attributing each feature’s contribution to the model’s
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Models were trained with three different data-splitting seeds

Fig. 3 Model development used 5-fold stratified cross-validation with
three random seeds. Each split included a unique test (blue) and train-
ing set (yellow). Models underwent outlier removal, feature selection,

data balancing, and hyperparameter tuning. The best model per fold
was selected by AUC, and overall performance was averaged
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predictions, based on Shapley values from cooperative
game theory [43].

Furthermore, to enable a robust comparison of model
results with established scales in the literature, the ict WENS
[7] score derived from Subarachnoid Hemorrhage Early
Brain Edema Score (SEBES) [44]Le Roux [45] and Hij-
dra [13] scales was computed for the cases in the test set
(n=41). Logistic regression models will be fitted to assess
the predictive value of ict WFNS for each clinical outcome.

Results
Dataset characterisation

From an initial cohort of 498 patients (2007-2023), 403 with
confirmed aneurysmal SAH were included. Early deaths
and cases with missing outcome data were excluded. As a
result, the number of patients varied by predictive model:
194 for poor clinical outcome, 133 for six-month mortality,
125 for vasospasm (96 clinical, 29 radiological), and 33 for
long-term hydrocephalus (Fig. 4a).

The training cohort comprised 68.5% females, with a
mean age of 52+18 years. Hypertension (41.7%), smok-
ing (28.5%), and diabetes (18.6%) were the most frequent
comorbidities. The majority presented with WFNS grade 1
(42.6%) and modified Fisher grade 3 (66.5%). Only admis-
sion variables were considered and treatment-related fea-
tures were excluded to ensure prognostic utility. CT images
were acquired primarily using Philips Brilliance 6 (n=380),
with a mean in-plane resolution of 0.46 mm (SD 0.05) and
slice thickness of 1.97 mm (SD 0.98). Imaging acquisition
parameters are summarized in Supplemental Fig. 1.

A distinct temporal test set of 41 patients (2023-2024),
acquired mainly with a different CT scanner than the train-
ing cohort, was used to assess generalizability (Fig. 4b).
This cohort comprised 14 patients with poor outcome, 13
deaths, 13 with radiological vasospasm, and 3 with hydro-
cephalus. Most CTs were acquired using GE Revolution
EVO (n=38), with a mean pixel size of 0.49 mm (SD 0.04)
and slice thickness of 1.40 mm (SD 0.88).

The clinical characteristics of the training/validation
and test cohorts are summarized in Table 1, along with the
results of a statistical comparison. Significant differences
were observed between cohorts in the prevalence of hyper-
tension, smoking, and alcoholism, as well as in WFNS and
modified Fisher grades at admission. Differences were also
found in age, glucose levels, and platelet counts.

@ Springer

Image segmentation

Validation of the automatic bleeding segmentation was
performed by comparing model predictions with clini-
cal database parameters, followed by expert review from
an experienced neurosurgeon. For the clinical database,
bleeding volumes for 255 patients averaged 20.14 mL
(range: 0—120.57 mL). In comparison, the automated model
reported an average of 48.95 mL (range: 0-156.09 mL).
Bland-Altman plot (Fig. 5) reveals a bias of 25 mL higher
for automatic segmentation. Larger discrepancies were
noted for higher bleeding volumes, consistent with other
studies reporting differences from 15 mL [46] to more than
20 mL [47] particularly for large hemorrhages where algo-
rithms struggle with contour delineation. Points near (0,0)
likely reflect cases with small bleeds segmented manually
but missed by the automatic model, reflecting its limitations
in detecting low-volume hemorrhages.

Additionally, a neurosurgeon visually assessed 20 ran-
domly selected segmentations across varying hemorrhage
volumes and locations. Overestimations were mainly
observed on convexity surfaces, while intrahemispheric
regions were more accurate. Supplemental Table 2 illus-
trates five representative cases, illustrating typical over- and
under-segmentations patterns.

Performance metrics of the models

First, the predictive power of radiomics was compared to
clinical data, as shown in the upper graph of Fig. 6. The
lower graph of Fig. 6 depicts models using only radiomics
versus combining radiomics and clinical data. The compari-
son includes radiomics from bleeding regions and from gray
and white matter regions.

Performance metrics (AUC, BalAcc, Sens, and Spec)
were used to evaluate each model. For each, 15 variations
were generated, with 95% confidence intervals based on
predictions from 5-fold cross-validation using 3 different
seed partitions.

Figure 6 upper shows that radiomics performs compara-
bly to traditional clinical variables. Radiomics-based models
perform comparably to those using clinical variables, with
overlapping confidence intervals across outcomes. AUC
values range from 0.76 to 0.84 for mortality, 0.75-0.76 for
clinical outcome, 0.64—0.69 for vasospasm, and 0.71-0.79
for hydrocephalus. For hydrocephalus in particular, class
imbalance warrants emphasis on BalAcc (0.60-0.75), Sens
(0.75-0.82), and Spec (0.44-0.58), with larger confidence
intervals indicating less reliability.

Figure 6 lower despicts models using only radiomics
or combining clinical and radiomic data. In the mortal-
ity model, AUC ranges from 0.76 to 0.87, with clinical
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498 patients with CT scan and
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Fig.4 Patient selection flow diagram, indicating the distribution of patients across different outcome categories

The best-performing configurations generally avoided
outlier removal, applied data balancing, and used ExtraRF,
RF, or XGBoost algorithms. Radiomics models typically
selected 10-30 features, while clinical models used 5-20.

outcomes from 0.75 to 0.85. Vasospasm AUC ranges from
0.69 to 0.75, and hydrocephalus ranges from 0.71 to 0.86. In
hydrocephalus similar trends are observed in BalAcc (0.60—
0.74), Sens (0.65-0.81), and Spec (0.44—0.68).
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Bland-Altman Plot
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Fig. 5 Bland-altman plot comparing bleeding volume (mL) from
manual and automatic segmentations. The central line shows the mean
bias; outer lines indicate 95% limits of agreement

Supplemental Fig. 2 shows calibration curves and Brier
scores across cross-validation folds for models using clini-
cal data, radiomics, or both.

Supplemental Fig. 3 presents model performance strati-
fied by age (<70 vs. =70 years). Models consistently per-
formed better in younger patients, with radiomics-based
models showing smaller AUC differences across age
groups. Supplemental Table 3 reports model performance
by clinical grade (WFNS 1-3 vs. 4-5). Models tends to clas-
sify patients with good grades more accurately.

Finally, models combining radiomics and clinical vari-
ables were evaluated on the independent test set (Fig. 7),
comparing white/gray matter (blue) versus blood segmenta-
tion (green). The highest AUC was observed for mortality
prediction (0.88 vs. 0.75). For clinical outcome, AUCs were
0.85 vs. 0.72; for vasospasm and hydrocephalus, 0.62 vs.
0.58 and 0.71 vs. 0.60, respectively. Blood based models
showed low sensitivity for vasospasm (e.g., 0.21) and poor
specificity for hydrocephalus (e.g., 0.33), while white/gray
matter-based models yielded more robust and balanced per-
formance across all tasks.

To benchmark predictive performance, a logistic regres-
sion using the ictWFNS score (n=41). As shown in Table 2,
ictWFNS achieved modest AUCs for mortality (0.70) and
poor clinical outcome (0.70), but showed limited predic-
tive value for vasospasm (AUC=0.60) and hydrocephalus
(AUC=0.56). In contrast, radiomics-based models demon-
strated superior performance across all outcomes. Table 2
also reports Sens, Spec and the p-value associated with
ictWFNS, which reflects the significance of the score as a
predictor in the logistic regression model. To support repro-
ducibility, a Supplemental Table 4 details the distribution
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of SEBES, Hijdra, and LeRoux scores used to compute the
ictWFNS.

Finally, Supplemental Figs. 4 and 5 present the F1-score
and accuracy metrics, along with confusion matrices for
each outcome, separately for the validation and independent
test sets.

Models interpretability

Figure 8 shows SHAP value plots for the mortality model
based on white and gray matter segmentation, which
achieved the highest AUC. Positive values indicate features
linked to higher risk, and negative values to better outcomes.
Features are ranked by impact, with the most relevant at the
top.

Additional SHAP values are provided in Supplemental
Fig. 6. In summary, WFNS at admission is the most sig-
nificant feature across all models. Glucose levels are also
important for most outcomes. Radiomics models show that
texture-based features in gray and white matter are cru-
cial for predicting clinical outcomes, reflecting structural
changes in the brain that are key to determining patient
prognosis and risks.

Discussion

This study assessed the predictive value of radiomics and
clinical data across multiple outcomes in patients with
aSAH. Radiomic features were extracted using two segmen-
tation strategies: bleeding and parenchymal tissue (gray and
white matter). Three types of predictive models were devel-
oped and validated: one based on clinical variables, one
on radiomics, and one combining both. Machine learning
models were trained and validated using cross-validation to
ensure robust performance assessment and to evaluate the
incremental benefit of integrating radiomics with clinical
information.

Overall, models demonstrated reasonable perfor-
mance, particularly for mortality and clinical outcomes
(AUC~85%). Vasospasm prediction was lower (AUC
75%), while hydrocephalus models still performed well
despite class imbalance (AUC 86%). Radiomics showed
comparable performance to clinical models, with overlap-
ping confidence intervals suggesting they can serve as com-
petitive alternatives to traditional clinical predictors.

Importantly, combined models preserved high perfor-
mance on the independent test set (AUCs: 89% mortality,
87% clinical outcome), though performance dropped for
vasospasm (—9%) and hydrocephalus (—12%), possibly
reflecting discrepancies in case definitions and variations in
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Fig. 6 Model performance was evaluated using AUC, balacc, sens, and
spec on the test set, with confidence intervals. The upper plot compares
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data with radiomics from both regions
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Fig. 7 Model performance results on the independent test set. The models combined radiomic and clinical data. Blue bars represent results based
on radiomics from gray and white matter, whereas green bars correspond to features extracted from bleeding segmentations

Table 2 Predictive outcome performance of IctWFNS and brain
radiomics-based models in the test cohort (n=41)

Outcome Model AUC Sens. Spec. p-value
ictWFNS*
Mortality ictWFNS 0.696 0.455 0.947 0.049
Brain 089 078 098 —
radiomics
model
Clinical ictWFNS 0.699 0.625 0.643 0.044
Outcome Brain 0.87 088 0.82 —
radiomics
model
Vasospasm ictWFNS 0.596 0.500 0.615 0.243
Brain 066 066 0.62 —
radiomics
model
Hydrocephalus  ictWENS 0.560 0.000 1.000 0.726
Brain 0.72 075 0.69 —
radiomics
model

*p-value from logistic regression. Not applicable for non-parametric
radiomics models

@ Springer

clinical variables. Moreover, imaging protocol heterogene-
ity may have further impacted generalizability.

Given that age is a known prognostic factor in aSAH,
patients were stratified using a 70-year cutoff. Notably, bet-
ter and more consistent AUCs were observed in younger
individuals, suggesting greater predictive value of both
radiomic and clinical features in this group. This finding
may reflect higher brain reserve in younger patients and
greater vulnerability to complications in older ones. SEBES
[44] also shows age-dependent prognostic value, further
supporting age-based stratification.

From a modeling perspective, tree-based algorithms (RF,
ExtraTrees, XGBoost) consistently performed well. Clinical
models typically required 5-20 features, while radiomics
models used 10-30. Data balancing improved performance,
whereas outlier removal had minimal impact. However,
including too many features increased overfitting risk and
reduced generalizability.

Radiomics models based on bleeding segmentation per-
formed similarly to parenchymal models during cross-val-
idation but showed lower performance in the independent
test set. Although bleeding segmentation was included for its
clinical relevance to vasospasm and hydrocephalus, it often
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Fig. 8 SHAP values diagrams for predicting mortality from white and grey matter segmentation models using (a) clinical, (b) radiomics and (¢)

combining both as input

overestimated blood volume, introducing bias and limiting
predictive value. In contrast, parenchymal features proved
more consistent and predictive, especially for mortality and
clinical outcomes. This illustrates a trade-off: bleeding seg-
mentation is faster but less reliable, whereas parenchymal
segmentation is more robust but resource-intensive.

Clinical and radiomics models demonstrated similar
predictive power both individually and in combination.
Radiomics are particularly valuable in scenarios where clin-
ical information is incomplete, missing, or unreliable, such
as in emergency settings or retrospective studies. In such
cases, radiomics-derived models could serve as a viable
alternative for early risk stratification, as they rely solely on
routinely acquired CT scans. This expands their applicabil-
ity and highlights their potential role in automated, repro-
ducible, and scalable decision-support systems.

To benchmark model performance, the ict WFNS [7] score
was calculated in the independent test cohort. It showed
moderate AUCs (~0.70) for mortality and poor outcome
but lower predictive value for vasospasm and hydrocepha-
lus. By comparison, radiomics-based models outperformed

ictWENS across all outcomes, particularly for mortality
(AUC 0.89) and poor clinical outcome (AUC 0.87). Nev-
ertheless, these results are limited by the small test cohort
(n=41), and validation in larger, multicenter populations
is warranted. To further contextualize our results, Table 3
compares the performance of our parenchymal radiomics—
clinical model with that of previously published models
based on traditional grading scales.

Radiomics models demonstrate moderate to strong
predictive performance compared to traditional grading
systems like WFNS and Fisher in aSAH. For 6-month
mortality, radiomics models yield balanced sensitivity
(0.75) and specificity (0.76), whereas WENS shows high
sensitivity (0.89) but low specificity (0.19), and hWENS
improves specificity (0.93) at the expense of sensitivity
(0.44) [50]. Thus, radiomics offer more balanced discrimi-
nation. For clinical outcome, radiomics outperform WFNS
and modWFNS [51]achieving an AUC of 0.85. They also
show competitive AUCs for vasospasm (0.75) [52] and
hydrocephalus (0.86) [53]. Importantly, radiomics models

@ Springer



528 Page 12 of 15

Neurosurgical Review (2025) 48:528

Table 3 Comparative performance of proposed models and published
studies in predicting key outcomes in aSAH, including AUC, sensitiv-
ity, and specificity where reported

Outcome Metric Radiomics- WFNS/ Reference
Based Fisher-Based
Models Studies
Mortality Sensand Sens 0.75  WFNS Sens  Raabe et
Spec Spec 0.76  0.89, Spec al. 2022
at 6 months 0.19 [50]
hWFNS Sens
0.44, Spec
0.93
at 6 months
Clinical AUC 0.85 WEFNS Nguyen et
Outcome At 6 AUC~0.837; al.,2023;
months modWFNS Hofmann
AUC~0.839; etal.,
At3 months 2023 [51]
Vasospasm AUC 0.75 Fisher/modi- Couret et
At6 fied Fisher al., 2024
months AUC~0.65—- [52]
0.70
At 3 months
Hydrocephalus AUC 0.86 Intraventricu- Couret et
At6 lar Hemor- al., 2024
months raghe score [52]
AUC~0.85 Raoetal.
at3 months 2024 [53]
modified
Fisher
AUC~0.81
At 1 month

support longer prediction windows, enabling broader clini-
cal decision-making.

SHAP analysis enhanced model interpretability by
highlighting key radiomic features contributing to predic-
tions. Among them, third-order texture descriptors were the
most influential, potentially capturing tissue heterogeneity,
edema, or complex hemorrhagic patterns [54, 55]. However,
these interpretations remain hypothetical and requires fur-
ther validation.

Clinical features also contributed meaningfully. The
WEFNS score at admission consistently appeared as the
most impactful feature, in line with its well-established
prognostic value [3, 56]. Other relevant predictors included
modified Fisher grade, glucose levels, age, smoking status,
lymphocyte count, and neutrophil count. Their consistent
importance across models and alignment with prior studies
reinforce the robustness and clinical relevance of our find-
ings [57, 58].

Unlike previous studies focused solely on bleeding-based
radiomics [59, 60]this work systematically compared bleed-
ing and parenchymal segmentation. Radiomics from gray
and white matter yielded superior and more generalizable
performance, underscoring their added value in outcome
prediction.

@ Springer

Despite these promising results, this study has limita-
tions. Its retrospective, single-center design may introduce
selection bias and limit generalizability. The small sample
size and class imbalance reduce statistical power and may
affect model calibration, despite the use of oversampling
and cross-validation. The high dimensionality of radiomic
data increases the risk of overfitting, and although MRMR
was used for feature selection, other strategies were not
explored.

Moreover, the limited test cohort, particularly in sub-
groups like hydrocephalus, further constrains performance
estimates. Radiomic features are sensitive to acquisition
parameters and artifacts; no scanner harmonization was
applied, and potential confounders such as dental implants
were not evaluated.

The automatic bleeding segmentation consistently over-
estimated hemorrhage volume by an average of 25 mL com-
pared to reference annotations. In addition, the algorithm
appeared to miss or under-segment some smaller hemor-
rhages, which may have further impacted the reliability of
radiomic features. Improving segmentation accuracy via
algorithm refinement, alternative models, or manual correc-
tion is essential to enhance model reliability.

Treatment variables were not included, and the test set,
though temporally independent, came from the same center.
Also, outcome definitions, especially for vasospasm, may
vary and affect generalizability. Thus, external multicenter
validation is needed. Additionally, the analysis did not strat-
ify performance by sociodemographic factors beyond age
and sex. Future research should address these gaps, promote
protocol harmonization, and prioritize clinical translation.

In conclusion, combining radiomics with clinical data
holds promise for real-time risk stratification, personalized
follow-up, and early intervention. Prospective validation,
harmonization frameworks, and implementation pathways
will be essential for successful clinical integration.

Conclusions

This study demonstrates that radiomics derived from both
brain parenchyma and hemorrhage segmentation can pre-
dict key outcomes in aSAH with performance comparable to
established clinical models. Radiomics- and clinical-based
models yielded AUCs exceeding 85% for mortality and poor
clinical outcome, while models for vasospasm and hydro-
cephalus also achieved satisfactory performance despite
class imbalance (AUCs of 75% and 86%, respectively).
Gray and white matter segmentation generally provided
superior predictive performance compared to bleeding-
based approaches, though both were effective. Interpretabil-
ity analysis identified relevant radiomic and clinical features
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associated with worse prognosis, consistent with previous
evidence.

These findings support the integration of radiomics into
prognostic modeling for aSAH. Future work should focus
on refining bleeding segmentation accuracy, validating
results in external cohorts, and evaluating clinical applica-
bility to facilitate adoption in decision support systems and
precision medicine strategies.
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